146 research outputs found

    Wnt signaling and hepatocarcinogenesis: Molecular targets for the development of innovative anticancer drugs

    Get PDF
    SummaryHepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. HCC can be cured by radical therapies if early diagnosis is done while the tumor has remained of small size. Unfortunately, diagnosis is commonly late when the tumor has grown and spread. Thus, palliative approaches are usually applied such as transarterial intrahepatic chemoembolization and sorafenib, an anti-angiogenic agent and MAP kinase inhibitor. This latter is the only targeted therapy that has shown significant, although moderate, efficiency in some individuals with advanced HCC. This highlights the need to develop other targeted therapies, and to this goal, to identify more and more pathways as potential targets. The Wnt pathway is a key component of a physiological process involved in embryonic development and tissue homeostasis. Activation of this pathway occurs when a Wnt ligand binds to a Frizzled (FZD) receptor at the cell membrane. Two different Wnt signaling cascades have been identified, called non-canonical and canonical pathways, the latter involving the β-catenin protein. Deregulation of the Wnt pathway is an early event in hepatocarcinogenesis and has been associated with an aggressive HCC phenotype, since it is implicated both in cell survival, proliferation, migration and invasion. Thus, component proteins identified in this pathway are potential candidates of pharmacological intervention. This review focuses on the characteristics and functions of the molecular targets of the Wnt signaling cascade and how they may be manipulated to achieve anti-tumor effects

    Mdm2 binding to a conformationally sensitive domain on p53 can be modulated by RNA

    Get PDF
    AbstractBiochemical characterisation of the interaction of mdm2 protein with p53 protein has demonstrated that full-length mdm2 does not bind stably to p53–DNA complexes, contrasting with C-terminal truncations of mdm2 which do bind stably to p53–DNA complexes. In addition, tetrameric forms of the p53His175 mutant protein in the PAb1620+ conformation are reduced in binding to mdm2 protein. These data suggest that the mdm2 binding site in the BOX-I domain of p53 becomes concealed when either p53 binds to DNA or when the core domain of p53 is unfolded by missense mutation. This further suggests that the C-terminus of mdm2 protein contains a negative regulatory domain that affects mdm2 protein binding to a second, conformationally sensitive interaction site in the core domain of p53. We investigated whether there was a second docking site on p53 for mdm2 protein by examining the interaction of full-length mdm2 with p53 lacking the BOX-I domain. Although mdm2 protein did bind very weakly to p53 protein lacking the BOX-I domain, addition of RNA activated mdm2 protein binding to this truncated form of p53. These data provide evidence for three previously undefined regulatory stages in the p53–mdm2 binding reaction: (1) conformational changes in p53 protein due to DNA binding or point mutation conceals a secondary docking site of mdm2 protein; (2) the C-terminus of mdm2 is the primary determinant which confers this property upon mdm2 protein; and (3) mdm2 protein binding to this secondary interaction site within p53 can be stabilised by RNA

    Bicistronic DNA display for in vitro selection of Fab fragments

    Get PDF
    In vitro display methods are superior tools for obtaining monoclonal antibodies. Although totally in vitro display methods, such as ribosome display and mRNA display, have the advantages of larger library sizes and quicker selection procedures compared with phage display, their applications have been limited to single-chain Fvs due to the requirement for linking of the mRNA and the nascent protein on the ribosome. Here we describe a different type of totally in vitro method, DNA display, that is applicable to heterodimeric Fab fragments: in vitro compartmentalization in water-in-oil emulsions allows the linking of an oligomeric protein and its encoding DNA with multiple ORFs. Since previously used emulsions impaired the synthesis of functional Fab fragments, we modified conditions for preparing emulsions, and identified conditions under which it was possible to enrich Fab fragments 106-fold per three rounds of affinity selection. Furthermore, we confirmed that genes encoding stable Fab fragments could be selected from a Fab fragment library with a randomized hydrophobic core in the constant region by applying heat treatment as a selection pressure. Since this method has all advantages of both phage display and totally in vitro display, it represents a new option for many applications using display methods

    CP-31398, a putative p53-stabilizing molecule tested in mammalian cells and in yeast for its effects on p53 transcriptional activity

    Get PDF
    BACKGROUND: CP-31398 is a small molecule that has been reported to stabilize the DNA-binding core domain of the human tumor suppressor protein p53 in vitro. The compound was also reported to function as a potential anti-cancer drug by rescuing the DNA-binding activity and, consequently, the transcription activation function of mutant p53 protein in mammalian tissue culture cells and in mice. RESULTS: We performed a series of gene expression experiments to test the activity of CP-31398 in yeast and in human cell cultures. With these cell-based assays, we were unable to detect any specific stimulation of mutant p53 activity by this compound. Concentrations of CP-31398 that were reported to be active in the published work were highly toxic to the human H1299 lung carcinoma and Saos-2 cell lines in our experiments. CONCLUSION: In our experiments, the small molecule CP-31398 was unable to reactivate mutant p53 protein. The results of our in vivo experiments are in agreement with the recently published biochemical analysis of CP-31398 showing that this molecule does not bind p53 as previously claimed, but intercalates into DNA

    Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fish under intensive culture conditions are exposed to a variety of acute and chronic stressors, including high rearing densities, sub-optimal water quality, and severe thermal fluctuations. Such stressors are inherent in aquaculture production and can induce physiological responses with adverse effects on traits important to producers and consumers, including those associated with growth, nutrition, reproduction, immune response, and fillet quality. Understanding and monitoring the biological mechanisms underlying stress responses will facilitate alleviating their negative effects through selective breeding and changes in management practices, resulting in improved animal welfare and production efficiency.</p> <p>Results</p> <p>Physiological responses to five treatments associated with stress were characterized by measuring plasma lysozyme activity, glucose, lactate, chloride, and cortisol concentrations, in addition to stress-associated transcripts by quantitative PCR. Results indicate that the fish had significant stressor-specific changes in their physiological conditions. Sequencing of a pooled normalized transcriptome library created from gill, brain, liver, spleen, kidney and muscle RNA of control and stressed fish produced 3,160,306 expressed sequence tags which were assembled and annotated. SNP discovery resulted in identification of ~58,000 putative single nucleotide polymorphisms including 24,479 which were predicted to fall within exons. Of these, 4907 were predicted to occupy the first position of a codon and 4110 the second, increasing the probability to impact amino acid sequence variation and potentially gene function.</p> <p>Conclusion</p> <p>We have generated and characterized a reference transcriptome for rainbow trout that represents multiple tissues responding to multiple stressors common to aquaculture production environments. This resource compliments existing public transcriptome data and will facilitate approaches aiming to evaluate gene expression associated with stress in this species.</p

    Expression et activité des isoformes de p63 dans les cellules de carcinome hépatocellulaire

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    p53 functional loss, stemness and hepatocellular carcinoma

    No full text
    The tumor suppressor p53 is a key player in the control of genomic integrity and homeostasis in connection with p63 and p73, the two other members of the p53 family. Loss of functional p53 leads to the proliferation and survival of mature cells and progenitor or stem cells that accumulate genetic alterations, thus favoring tumorigenesis. p53 loss of function, observed in a wide variety of human tumor types, is frequently caused by missense mutations more frequently found in the DNA binding domain, but can also be due to the expression of a plethora of viral and cellular negative regulators. Human hepatocellular carcinoma (HCC) represents a specific situation, first because the TP53 gene mutations pattern exhibits a “hot spot” rarely found in other tumor types that is linked to Aflatoxin B1 exposure and, second, because many HCCs do not exhibit any TP53 mutation. Here, we provide an overview of the current knowledge about the inhibition of p53 functions by the N-terminal (ΔN) truncated forms of the family, and their role in the emergence and maintenance of pre-malignant cells with stem cell characteristics and in HCC development. We focus in particular on the Nanog-IGF1R-ΔNp73 axis that is associated with stem-like features in HCC cells and that may provide an attractive new therapeutic target and help to develop new biomarkers for HCC risk stratification, as well as preventive strategies
    corecore